- 您当前的位置:公司主页 >稳健设计理论在液体动压滑动轴承
稳健设计理论在液体动压滑动轴承
作者:bearingpower 发表时间:2010-12-12
稳健设计理论在液体动压滑动轴承中的应用何 伟,李 晔,彭子梅,刘 云(贵州工业大学机械工程与自动化学院,贵州 贵阳 550003)摘 要:将稳健设计理论应用于液体动压滑动轴承,按照其基本原理建立了数学模型,得到了更符合要求的优化设计方案。关键词:稳健设计;滑动轴承;优化设计中图分类号:TH133.31 文献标识码:B0 前 言滑动轴承是各种传动装置中广泛采用的支承件,特别是在高速运转机械中,为了减小摩擦,提高传动效率,要求轴承与轴颈间脱离接触并具有足够的油膜厚度,以形成液体间的摩擦状态。在滑动轴承设计中,只有当轴承尺寸、轴承载荷、相对运动速度、润滑油的粘度、轴承间隙以及表面粗糙度之间满足一定关系时,才能实现液体摩擦。任一参数取值不当,将出现非液体摩擦状态,导致液体摩擦的失效。以上参数的优化设计对轴承的使用性能及寿命有十分重要的作用。通常,在设计中,往往对轴承的各设计参数和使用条件提出更高要求。轴承的设计参数或误差对轴承的性能的影响是非线性的,在不同的设计方案中,同样的误差程度,所产生的性能波动不尽相同。稳健设计就是找到一种设计方案,使得液体动压轴承的性能对误差不十分敏感,同时达到较宽松的加工经济精度而降低成本的目的。本文对某液体动压滑动轴承进行稳健设计,建立相应的数学模型,并求得优化的设计方案。1 滑动轴承的工程分析下面是径向动压滑动轴承的一组计算公式。1.最小油膜厚度hminhmin=C-e=C(1-ε)=rψ(1-ε) (1)式中C=R-r半径间隙,R轴承孔半径;r轴颈半径;ε=e/C偏心率;e为偏心距;ψ=C/r相对间隙,常取ψ=(0.6-1)×10-3(v)1/4,v为轴颈表面的线速(m/s)设计时,最小油膜厚度hmin必须满足:hmin/(Rz1+Rz2)≥2-3 [1] (2)式中Rz1、Rz2为轴颈和轴承的表面粗糙度。2.轴承的特性系数(索氏系数)S=μn/(pψ2)(3)式中μ润滑油在轴承平均工作温度下的动力粘度(Pa?s);n轴颈的转速(r/s);p平均压强 (N/m2)用来检验轴承能否实现液体润滑。ε值可按下面简化式求解。Aε2+Eε+C=0 (4)其中A=2.31(B/d)-2,E=-(2.052A+1), C=1+1.052A-6.4088S.上式中d轴径的直径(m);B轴承的宽度(m)通常ε选在0.5-0.95之间,超出0-1间的值,均非ε的解[1]。3.轴承的温升油的平均温度tm必须加以控制,否则,润滑油的粘度会降低,从而破坏轴承的液体润滑。油的温升为进出油的温度差,计算式为:式中 f?摩擦系数;c?润滑油的比热,通常取1680-2100 J/kg℃;ρ?润滑油的密度,通常取850-900kg/m3;Q?耗油量(m3/s),通常为承载区内流出的端泄量;KS?为轴承体的散热系数[1,2]上式中的(f/ψ)、(Q/ψνBd)值,如ε=0.5-0.95可按f/ψ=0.15+1.92 (1.119-ε)[1+2.31 ( B/d )-2(1.052-ε)] (6)Q/ψνBd=ε(0.95-0.844ε)/[(B/d)-2+2.34-2.31ε] [2] (7)求解,上式中的B,d的单位均为m,p的单位为N/m2,ν为油的运动粘度,单位为m/s.轴承中油的平均温度应控制在tm=t1+△T/2≤75℃ (8)其中t1为进油温度;tm为平均温度2 径向动压滑动轴承稳健设计实例设计过程中可供选择的参数及容差较多,在选用最佳方案时,必须考虑各种因素的影响和交互作用。如参数B、轴颈与轴瓦的配合公差、润滑油的粘度的变化对油膜温升及承载能力的影响等,经过稳健优化设计,寻求满足给定条件的更佳设计参数的方案。2.1 原设计方案已知一个径向动压滑动轴承,工作载荷W=18000 N,轴颈直径d=80 mm,转速n=1000 r/min,轴承包角α=180°,轴承为自位轴承,载荷稳定。宽径比B/d=0.8,轴承配合为H7f6,润滑油选取15号机械油,常温下油粘度η=0.0135 Pa?S.轴颈表面粗糙度,精磨Rz1=1.6 μm,轴瓦表面粗糙度,精车RZ2=3.2 μm,进油温度T=35 ℃.润滑油的密度ρ=900 kg/m3,润滑油的比热c=1700 J/kg℃,轴承体的散热系数KS=140 W/m2℃[2].2.2 目标函数要求设计出的动压轴承S=hmin/(Rz1+Rz2)≥2,且对S=2具有最小波动[3]。设S的波动为σs,S的中心值为μs,设计目标是μs大、σs小,目标函数可写为:min(σs/μs)=min[∑(S-μs)2]1/2/μs [3] (9)2.3 约束条件(1)平均油温的限制 G2(X)=(t1+Δt/2)/75-1≤0 (10)(2)油粘度的限制 G3(X)=0.0069/η-1≤0 (11)(3)尺寸的限制 G4(X)=0.25/(B/d)-1≤0 (12)G5(X)=(B/d)/1.5-1≤0 (13)2.4 参数设计变量选取相对间隙ψ、宽径比B/d、常温下润滑油的粘度η为可控因素。2.4.1 相对间隙ψ的选取ψ值由公差配合而来。选取轴颈与轴瓦的配合分别为:H7f6,H8f7,H8f8.取相对间隙的平均值为其水平值,最大相对间隙和最小相对间隙为其误差值。计算项目H7/f6H8/f7H8/f8 轴承公差孔轴孔轴孔轴 φ80-0+0.030φ80-0.049-0.030φ80-0+0.046φ80-0.060-0.030φ80-0+0.046φ80-0.076-0.030 最大直径间隙0.0790.1060.122 最小直径间隙0.0300.0300.030 最大相对间隙0.00098750.0013250.001525 最小相对间隙0.0003750.0003750.00095 2.4.2 宽径比B/d的选取分别取0.8,1.0,1.2.2.4.3 润滑油的粘度η的选取分别取15号、22号和32号机械油。具体数值见表1.3 模型求解采用正交实验的方法来模拟各误差因素的影响。借助正交表可以选出具有代表性的实验,对以较少的实验次数所获得的数据进行统计分析,可以得到满意的结果。3.1 可控因素水平表对三因素三水平试验,且不考虑交互作用,可用L9(34)安排试验。表1 可控因素水平表因素水平相对间隙ψ/mm宽径比B/d常温油粘度η/Pa?S 10.000680.80.0135 20.000851.00.018 30.000951.20.027 3.2 容差设计及误差因素水平表选出影响S的五个主要因素:相对间隙ψ、宽径比B/d、润滑油的粘度η均有误差,在参数设计中当把它们作为可控因素考虑时,实际上是优选它们的名义值,由于它们均有误差,故亦可作为误差因素考虑。记为ψ'、(B/d')、η'以示与可控因素相区别。另外,载荷和转速亦是误差因素,分别记为F'、N',是纯误差因素。除相对间隙的误差水平表已给出外,其余误差因素水平均按5%选取[4,5]。选用L18(21×37)为外表,得到正交实验结果如表2所示(这里我们仅报导3组正交实验结果,其中一组为优选方案,一组为原方案,另一组为对比方案)。将这三组方案的S的波动情况表现在图1上,从图1中可以明显看出,优化方案的S波动最小,且始终满足S>2的要求。其中S设是指没有考虑设计参数和制造过程中的误差影响而得到的安全系数值。表2 正交实验结果表优选方案原方案对比方案 公差配合为H8/f7宽径比为B/d=0.8润滑油的粘度η=0.018公差配合为H7/f6宽径比为B/d=0.8润滑油的粘度η=0.0135公差配合为H8/f8宽径比为B/d=1.0润滑油的粘度η=0.01 SSISISSS 2.4932.56812.116102.1722.9183.009 2.7702.84922.345112.4133.2412.906 2.1612.88932.596122.4452.7213.372 2.0472.51041.821131.7621.9152.124 2.2812.43852.039142.1652.4512.632 2.5282.44362.255152.1752.7142.615 2.0122.15171.764161.7622.0922.088 2.2052.16581.768171.5812.0711.841 2.2142.11591.758181.9612.0462.305 S设=2.770S设=2.345S设=3.241 另据方差分析表明,因素 ψ 对S影响是显著的,因素η 次之。最佳方案(即最佳设计参数)为:公差配合为H8/f7,宽径比为0.8,润滑油为22号机械油,润滑油的粘度η=0.018 Pa?S.F=18000 N,n=1000 r/m.图1 三种方案的S波动情况比较4 结果分析从图1中可以看出:(1)原方案在设计条件下,S=2.342,是满足最小油膜厚度要求的。但是,一旦相对间隙变大时,S就会急剧下降,甚至出现很多S<2的情况,不符合液体润滑的要求。因此,原方案不符设计要求。(2)选择S设最大(S设=3.241)的设计方案,如图中虚线所示,该设计方案受误差的影响十分明显,其最差点S=1.841.(3)优选方案的S数值随误差的波动最小,S始终满足大于等于2的要求。由以上分析可以看出,对于同样的误差影响,优化方案的S最为稳定。这说明我们可以将设计参数的误差范围放宽,从而极大地降低了生产成本。工厂设备条件的少许恶化、工人技术水平的差异以及外界温度、湿度在一定范围内的变化均不能对液体润滑的实现造成很大的影响,这就是稳健设计的优势所在。参考文献:[1] 徐灏.新编机械设计师手册[M].北京:机械工业出版社,1995.[2] 唐金松.简明机械设计手册[M].上海:上海科学技术出版社,1992.[3] 张蕾,卢玉明,石均.高速、中载圆柱齿轮减速器的稳健设计[J].机械设计,1998,20(10):10-12.[4] 韩之俊.三次设计[M].北京:机械工业出版社,1991.[5] 陈立周.稳健设计[M].北京:机械工业出版社,2000.Application of Robust Design Theory to LiquidDynamic Sliding BearingsHE Wei,LI Ye,PENG Zi-mei,LIU Yun(College of Mechanical Engineering and Automation,GUT,Guiyang 550003,China)Abstract:As an effective method,robust design can improve product quality and decrease the cost of product,and great attention is paid to it in industrialized countries.This paper discusses the robust design of sliding bearnigs,builds mechanical models and obtains a set of parameters to ensure products satisfying the requests of low cost and high quality.Key words:robust design;sliding bearing;optimal design上一篇:轴承表面磨削出现缺陷的原因
下一篇:轴承损伤原因一览表
- 市场一部:022-58519722
- 市场二部:022-58519723
- 投诉受理:022-58519721
- 传真总机:022-23868160


