- Äúµ±Ç°µÄλÖ㺹«Ë¾Ö÷Ò³ >С²¨°ü¼¼ÊõÔÚ¹ö¶¯Öá³Ð¹ÊÕÏÕï¶ÏÖÐ
С²¨°ü¼¼ÊõÔÚ¹ö¶¯Öá³Ð¹ÊÕÏÕï¶ÏÖÐ
×÷Õߣºbearingpower ·¢±íʱ¼ä£º2010-12-12
С²¨°ü¼¼ÊõÔÚ¹ö¶¯Öá³Ð¹ÊÕÏÕï¶ÏÖеÄÓ¦ÓÃÕÅÎ÷Ó ÕÅÓÀÏéÕªÒª£ºÐ¡²¨°ü¿ÉÒÔ½«Ðźŷֽ⵽ÈÎÒâÆµ¶ÎÉÏ£¬¿ÉÒÔʵÏÖÐźŵÄÈÎÒâÆµ¶Î¡¢¶àƵ¶Î¡¢Õ´øÂ˲¨£¬»ùÓÚÕâÒ»ÀíÂÛ±¾ÎÄÌá³öÁËÒ»ÖÖС²¨°üÐźÅÌØÕ÷ÌáÈ¡Ëã·¨£¬²¢Í¨¹ýÁ½¸ö·ÂÕæÊµÀýÑéÖ¤ÁËËã·¨µÄ¿ÉÐÐÐÔ£¬×îºóͨ¹ý±¾Ëã·¨·ÖÎö¹ÊÕϹö¶¯Öá³ÐÕñ¶¯Ðźţ¬½ÏºÃµØÌáÈ¡ÁËÌØÕ÷Ðźţ¬Ëã·¨½â¾öÁËÖá³ÐÕñ¶¯ÐźŸÉÈÅ´óÂ˲¨ÄѵÄÎÊÌ⣬ÔÚ״̬¼à²âÓë¹ÊÕÏÕï¶ÏÁìÓòÄËÖÁÐźŴ¦ÀíÁìÓò¾ßÓйãÀ«µÄÓ¦ÓÃǰ¾°¡£¹Ø¼ü´Ê£ºÐ¡²¨°ü Öá³Ð ¹ÊÕÏÕï¶ÏAbstract: Wavelet packets can decompose signal to arbitrary frequency segment, can perform signal¡¯s filtering on arbitrary frequency segment or on several frequency segment or on narrowband. On the base of that, the paper put forward a signal distilling algorithm based on wavelet packets, which is proved by two imitational examples. At last analyze the liberation signal of rolling axletree, and well distill character signal. The arithmetic solve the problem of signal distilling difficulty in axletree vibration that make wavelet packets have wide application on the field of state watching and measuring, and on fault¡¯s diagnosis, even on signal processing.Key words: Wavelet packets Axletree Fault¡¯s diagnosisÖÐͼ·ÖÀàºÅ:TH165.3Ò»¡¢ ÒýÑÔС²¨ÀíÂÛ±»ÈÏΪÊǶԸµÀïÒ¶·ÖÎöµÄÖØ´óÍ»ÆÆ£¬ËüÒѳÉΪµ±½ñ´ÓÓ¦ÓÃÊýѧµ½ÐźÅÓëͼÏó´¦ÀíµÈÖÚ¶àÁìÓòµÄÑо¿Èȵ㡣С²¨±ä»»ÊÇÓÉ·¨¹ú¿ÆÑ§¼ÒMorlet[4]ÓÚ1980ÄêÔÚ½øÐеØÕðÊý¾Ý·ÖÎöʱÌá³öµÄ¡£Ð¡²¨±ä»»ÊÊÓÃÓÚÐźŵÄÖ÷ÒªÐÅÏ¢¼¯ÖÐÔÚµÍÆµÓòµÄÇé¿ö¡£µ±¸ÐÐËȤµÄƵÂʳɷÖλÓÚÖÐ¸ßÆµ¶Îʱ£¬Èç»úеÕñ¶¯Ðźš¢ÓïÒôÐźŵȣ¬ÓÉÓÚС²¨±ä»»ÔÚ¸ßÆµ¶ÎµÄƵÆ×´°¿Ú½Ï¿í£¬ÆäС²¨ÏµÊýÖаüº¬µÄƵÂʳɷֹý¶à£¬ÎÞ·¨»ñÈ¡¸ÐÐËȤµÄƵÂÊÐźš£ÀûÓÃС²¨°ü¼¼ÊõÔò¿ÉÒÔ½«Ð¡²¨±ä»»ÖÐÍ£Ö¹·Ö½âµÄÖÐ¸ßÆµ¶ÎС²¨ÏµÊý¼ÌÐø·Ö½â£¬Ê¹·Ö½âÐòÁÐÔÚÕû¸öʱƵÓòÄÚ¶¼ÓнϸߵÄʱƵ·Ö±æÂʺÍÏàͬµÄ´ø¿í¡£¹ö¶¯Öá³ÐÊdz£ÓõĻúеÉ豸£¬Ò²ÊÇÈÝÒ׳öÏÖ¹ÊÕϵIJ¿¼þ£¬¶ÔÓÚ¹ö¶¯Öá³ÐµÄÕï¶Ï·½·¨[1][2]ºÜ¶à£¬³£ÓõÄÓÐÆµÓò·ÖÎö·¨£¬ÓÉÓÚÕñ¶¯ÐźŴæÔںܴóµÄ¸ÉÈÅÔëÉù£¬ÆµÓò·ÖÎö·¨ÓкܴóÀ§ÄÑ£¬±¾ÎÄÔËÓÃС²¨°ü¼¼Êõ¶ÔÐźŽøÐзֽâÖØ¹¹£¬ÊµÏÖÈÎÒâÆµ¶ÎÂ˲¨£¬»ñµÃÁ˽ϺõÄЧ¹û¡£¶þ¡¢»ùÓÚС²¨°üµÄÐźÅÂ˲¨Ëã·¨2.1 С²¨°üÀíÂÛС²¨·ÖÎöµÄ˼ÏëÊÇÓÃÒ»×庯ÊýÈ¥±íʾ»ò±Æ½üÒ»ÐźŻòº¯Êý,ÕâÒ»×庯Êý³ÆÎªÐ¡²¨º¯Êýϵ¡£ËüÊÇͨ¹ýÂú×ãÒ»¶¨Ìõ¼þµÄ»ù±¾Ð¡²¨º¯ÊýµÄ²»Í¬³ß¶ÈµÄÆ½ÒÆºÍÕ¹Ëõ¹¹³ÉµÄ[4][5][6][7]¡£ÓÃС²¨º¯Êýϵ±íʾµÄÌØµãÊÇËüµÄʱ¿íÓëÆµ¿íµÄ³Ë»ýºÜС£¬ÇÒÔÚʱ¼äºÍƵÂÊÖáÉ϶¼ºÜ¼¯ÖС£Òò´Ë£¬Æäʱ-Ƶ·Ö±æÂÊÔÚµÍÆµ´¦ÆµÂÊ·Ö±æÂʸߣ¬ÔÚ¸ßÆµ´¦Ê±¼ä·Ö±æÂʸߣ¬ÆµÂÊ·Ö±æÂÊÈ´½µµÍ¡£ÕâÊÇÕý½»Ð¡²¨»ùµÄÒ»´óȱÏÝ¡£¶øÐ¡²¨°üÈ´¾ßÓÐËæ·Ö±æ µÄÔö¼Ó,±ä¿íµÄƵÆ×´°¿Ú½øÒ»²½·Ö¸î±äϸµÄÓÅÁ¼Æ·ÖÊ¡£¶ÔÒ»¸ø¶¨µÄÐźţ¬Í¨¹ýÒ»×éµÍ¸ßͨ×éºÏÕý½»Â˲¨Æ÷H,G£¬¿ÉÒÔ½«ÐźŻ®·Öµ½ÈÎÒâÆµ¶ÎÉÏ£¬Æä»®·Ö¹ý³ÌÈçͼ1Ëùʾ: HG HHGHHGGG HHHGHHHGHGGHHHGGHGHGGGGG ͼ1 С²¨°ü·Ö½â¹ý³Ì2.2 С²¨°üÂ˲¨Ëã·¨ÔÚС²¨°ü·Ö½âµÄ¹ý³ÌÖУ¬Ëæ×Å·Ö½â²ãÊýµÄÔö¼ÓÊý¾ÝµãÊý³É±¶¼õ°ë¡£ÈôÔʼÊý¾Ý³¤¶ÈΪ2N,·Ö½âL´Î,ÿ¸öƵ¶ÎÊý¾Ý³¤¶È±äΪ2N-L,ÊÇÔ³¤µÄ1/2L¡£±¾ÎÄÌá³öµÄС²¨°üÐźÅÌáÈ¡Ëã·¨,ÀûÓÃÁËС²¨°ü¿ÉÒÔ½«ÐźŰ´ÈÎÒâʱƵ·Ö±æÂÊ(Âú×ã²â²»×¼ÔÀí)·Ö½âµÄÌØµã£¬½«ÐźÅÕý½»·Ö½âµ½ÏàӦƵ¶Î¡£²¢¸ù¾ÝÏÈÑé֪ʶ£¬±£Áô·Ö½âÐòÁÐÖÐÈÎÒâÒ»¸ö»ò¼¸¸öƵ¶ÎÐòÁнøÐÐÖØ¹¹¡£Öع¹Ðźų¤¶ÈÈÔΪ2N£¬¾ßÓнÏյįµ´ø¿í¶ÈºÍ½Ï¸ßµÄÐÅÔë±È¡£ËäÈ»ÕâÒ»¹ý³ÌµÄʵÖÊÊÇ´øÍ¨Â˲¨£¬µ«Â˲¨ÐÔÄÜÔ¶ÓÅÓÚÓÐÏÞ³¤³å»÷ÏìÓ¦(FIR)Â˲¨Æ÷´øÍ¨Â˲¨µÄЧ¹û£¬×è´øÐ¹Â©ÉÙ£¬Í¬Ê±¿ÉÒÔÁé»î·½±ãµØÊµÏÖ¶àͨ´øÂ˲¨¡£Ð¡²¨°üÂ˲¨Ëã·¨µÄʵÏÖ¹ý³ÌÈçÏ£ºa ѡȡ¹²éîÕý½»Â˲¨Æ÷hk£¬Áîgk£½£¨£1£©k-1h1-k¡£b È·¶¨·Ö½â²ãÊýL£¬L>0¡£Èç¹ûÔʼÐźÅf(i)³¤¶ÈΪ2N£¬²ÉÑùƵÂÊΪfs, Ôò·Ö½â²ãÊýLӦСÓÚN,µÚL²ãÿ¸öÐòÁеĴø¿íΪfs/2L+1,ÆðʼƵÂÊΪfn=(n-1)fs/2L+1¡£c¸ù¾ÝÏÈÑé֪ʶºÍÿ¸öÐòÁÐµÄÆðʼƵÂÊ,¼ÆËã³ö¸ÐÐËȤµÄƵÂʳɷÖλÓÚµÚL²ãµÄij¼¸¸öƵ¶ÎÄÚ,¼ÇΪ ¡£d¶ÔÔʼÊý¾Ý½øÐÐÖð²ãС²¨°ü·Ö½â£¬ÈÎÒâL²ãÓÐλÓÚ²»Í¬Æµ¶ÎµÄ2L-1×éÐòÁУ¬Ã¿×éÐòÁзֱðÓɵÍͨÂ˲¨½á¹ûdj(k)£¬ºÍ¸ßͨÂ˲¨½á¹ûcj(k)×é³É£¬Ã¿×éÐòÁеij¤¶ÈΪN/2l-1£¬Áîd0(k)=f(k), ÔòÓÐÏÂÁеÝÍÆ¹«Ê½£º e Áî ×é³ÉеÄÐòÁÐ ¡£f ÀûÓÃÖØ¹¹¹«Ê½Öع¹Ðźŵõ½ÔʼÐźŠ¡£Èý¡¢·ÂÕæ·ÖÎöÔںܶàÇé¿öÏ£¬ÎÒÃǸÐÐËȤÐÅºÅµÄÆµ¶ÎÍùÍùÊÇÒÑÖªµÄ£¬ÀýÈçÖá³ÐµÄÕñ¶¯Ðźţ¬¹ÊÕÏÐÅºÅµÄÆµÂÊ¿ÉÒÔͨ¹ýÖá³Ð²ÎÊý¼ÆËã³öÀ´£¬ÀûÓÃС²¨°üÂ˲¨Ëã·¨¿ÉÒÔ·½±ãµØ½«¸ÐÐËȤµÄÐźÅÌáÈ¡³öÀ´£¬ÏÂÃæÒÔÁ½¸ö·ÂÕæÊµÀý½øÐзÖÎö¡£3.1 ÔëÉù¸ÉÈÅϵ¥ÆµÂÊÕýÏÒÐźŵÄÌáÈ¡ÒÔµ¥ÆµÂÊÐźŠΪÀý½øÐзÖÎö£¬¸ÉÈÅÔëÉùΪ°×ÔëÉù¡£ÐÅºÅÆµÂÊΪ1HZ£¬²ÉÑùƵÂÊΪ1024HZ,·Ö½â²ãÊýΪ7£¬Ã¿¸öÐòÁеĴø¿íΪfs/2L+1£½1024/32=32´óÓÚÐÅºÅÆµÂÊ,ËùÒÔÈ¡µÚ7²ãµÄµÚÒ»¸öÐòÁнøÐзÖÎö,·ÖÎö½á¹ûÈçͼ2£ºÍ¼2 µ¥ÆµÂÊÕýÏÒÐźŷÖÎöÆ×ͼ¸ÉÈÅÔëÉù±»½ÏºÃµØÈ¥µô¡£3.2 ÔëÉù¸ÉÈÅÏÂ¶àÆµÂÊÕýÏÒÐźŵÄÌáÈ¡ÒÔ¶àÆµÂÊÐźŠΪÀý½øÐзÖÎö£¬¸ÉÈÅÔëÉùΪ°×ÔëÉù£¬²ÉÑùƵÂÊΪ1024HZ£¬·Ö½â²ãÊýΪ7£¬È¡µÚ7²ãÐÅºÅÆµÂʶÔÓ¦µÄÁ½¸öÐòÁнøÐзÖÎö¡£·ÖÎö½á¹ûÈçͼ£ºÍ¼3 ¶àƵÂÊÕýÏÒÐźŷÖÎöÆ×ͼÁ½¸öÕýÏÒÐźű»½ÏºÃµØ´ÓÔëÉùÖзÖÀë³öÀ´¡£·ÂÕæ±íÃ÷Ö»ÒªÒÑÖªÐÅºÅµÄÆµÂÊ·¶Î§£¬¾Í¿ÉÒÔʵÏÖÈÎÒâÆµ¿íµÄÂ˲¨¡£ËÄ¡¢ÊµÑé·ÖÎö¹ö¶¯Öá³ÐÊÇ»úеÉ豸ÖÐÒ×ÊÜËðµÄÉ豸֮һ£¬Ôڸ߸ººÉ³¤Ê±¼äÔËתÌõ¼þÏÂÈÝÒ×·¢ÉúµãÊ´¡¢°þÂä¡¢ÁÑÎÆµÈ¹ÊÕÏËðÉË¡£³öÏÖ¹ÊÕϺ󣬹ö¶¯Öá³ÐµÄÕñ¶¯¼Ó¾ç£¬¹ÊÕϵ㴦´æÔÚÖÜÆÚµÄÂö³åÁ¦£¬ÆäƵÂÊ¿ÉÓÉÖá³Ð²ÎÊý¼°Öá³ÐÐýתƵÂÊÇóµÃ£¬Í¨¹ý·ÖÎöÖá³ÐÕñ¶¯µÄƵÆ×¾Í¿ÉÒÔ·ÖÎöÖá³ÐµÄ¹ÊÕÏ¡£ÓÉÓÚÖá³ÐµÄÖÆÔì¼°°²×°Îó²îÒÔ¼°Íⲿ¸ÉÈŵÈÒòËØ£¬Õñ¶¯ÐźŴæÔÚ´óÁ¿µÄ¸ÉÈÅÐźţ¬Ö±½Ó¶ÔÕñ¶¯ÐźŽøÐзÖÎöÄÑÒÔÌáÈ¡¹ÊÕÏÆµÂÊ¡£ÏÂÃæÓñ¾ÎÄÌá³öµÄС²¨°üÐźÅÌáÈ¡Ëã·¨¶ÔÖá³ÐÐźŽøÐзÖÎö£¬ÌáÈ¡¹ÊÕÏÆµÂÊ¡£Öá³ÐµÄתËÙΪ500r/min,Öá³ÐÐͺÅΪ37306£¬Öá³ÐÊÂÏȾ¹ý´¦Àí£¬Íâ»·ÓÃÏßÇиî»ú¸îÁËÒ»¶ÎÁѷ죬ÓÃÒÔÄ£ÄâÍâ»·ÁÑÎÆ¹ÊÕÏ¡£¸ù¾ÝÖá³Ð²ÎÊý¿É¼ÆËãÄÚ»·¡¢Íâ»·µÄͨ¹ýƵÂÊΪ560HZ£¬290HZ¡£Èçͼ4Ëùʾ£¬ÔʼÕñ¶¯ÐźŴæÔÚ´óÁ¿µÄ¸ßƵ¸ÉÈÅ£¬¹ÊÕÏÆµÂÊÆ×Ïß²»Ã÷ÏÔ£¬Í¨¹ý±¾ÎÄÌá³öµÄС²¨°üÐźÅÌáÈ¡Ëã·¨£¬Ñ¡È¡ÄÚ¡¢Í⻷ͨ¹ýƵÂʼ°Æä2±¶Æµ¡¢3±¶ÆµËùÔÚÆµ¶ÎµÄÐòÁнøÐÐÐźÅÖØ¹¹£¬²¢¶ÔÖØ¹¹ÐźŽøÐÐÆ×·ÖÎö£¬·¢ÏÖ290HZ£¬580HZ´¦ÓÐÃ÷ÏÔÆ×Ïߣ¬290HZÓëÍâ»·ÌØÕ÷ƵÂÊÏà·û£¬·ÖÎö±íÃ÷Íâ»·ÓйÊÕÏ£¬Óëʵ¼ÊÏà·û¡£Í¼4 Öá³ÐÕñ¶¯ÐÅºÅÆµÆ×ͼ ͼ5 С²¨°üÈ¥ÔëºóµÄÖá³ÐÕñ¶¯ÐÅºÅÆµÆ×ͼÎå¡¢½áÂÛ±¾ÎÄÌá³öµÄС²¨°üÐźÅÌáÈ¡Ëã·¨¿ÉÒÔ½«Ðźŷֽ⵽ÈÎÒâյįµ¶ÎÉÏ£¬ÊµÏÖ¶àͨµÀÕ´øÂ˲¨£¬´Ó¶ø¿ÉÒÔÓÐЧµÄÒÖÖÆÔëÉù¸ÉÈÅ£¬ÕâÊÇÈκδ«Í³Â˲¨·½·¨¶¼ÎÞ·¨»ñµÃµÄÓÅÁ¼Æ·ÖÊ£¬·ÂÕæºÍʵÑé¶¼±íÃ÷±¾Ëã·¨ÓкÜÇ¿µÄÌØÕ÷ÐźŻñÈ¡ÄÜÁ¦£¬ÔÚ¹ÊÕÏÕï¶ÏÓë״̬¼à²âÁìÓò¾ßÓйãÀ«µÄÓ¦ÓÃǰ¾°¡£²Î¿¼ÎÄÏ×£º1 É豸¹ÊÕÏÕï¶ÏÔÀí¡¢¼¼Êõ¼°Ó¦ÓÃ.¿ÆÑ§³ö°æÉç,106-109.2 ¹¢ÖÐÐÐ,ÇüÁºÉú.С²¨°üÔÀí¼°ÆäÔÚ»úе¹ÊÕÏÕï¶ÏÖеÄÓ¦ÓÃ.ÐźŴ¦Àí,1994,10(4):244~2493 ÁõÊÀÔª,¶ÅÈóÉú,ÑîÊå×Ó.С²¨°ü¸Ä½øËã·¨¼°ÆäÔÚ²ñÓÍ»úÕñ¶¯Õï¶ÏÖеÄÓ¦ÓÃ.ÄÚȼ»úѧ±¨,2000,18(1):11~164 Daubechies 1. Orthonormal bases of compactly supported wavelets. Comm in Pure and Applied Math, 2003,41(7):909~10055 Coifman R R, WickerhauserM V. Entroy-based algorithms for best basis selection. IEEE Tran on Information Theory, 1992,38(2):713~7186 Daubechies I. Orthonomal bases of compactly supported wavelets. Comm. Pure and Appl. Math. ,1988,41:909~9967 Mallet S. A theory for multiresolution signal decomposition ;The wavelet represention . IEEE Trans. On Patern Anallysis and Machine Intelligence,1989,11(7):674~693×÷Õß¼ò½é:ÕÅÎ÷ÓÂ,ÄÐ,1978ÄêÒ»ÔÂÉú,º£¾ü¹¤³Ì´óѧÂÖ»ú¹¤³Ìרҵ²©Ê¿Éú.ÉÏһƪ£º¼õËÙÆ÷µÄ»ù±¾¹¹Ôì
ÏÂһƪ£ºSLonÐÍ´ÅÑ¡»úÖá³ÐÐͺÅÁбí
- Êг¡Ò»²¿£º022-58519722
- Êг¡¶þ²¿£º022-58519723
- ͶËßÊÜÀí£º022-58519721
- ´«Õæ×Ü»ú£º022-23868160
- NSKÖá³ÐÀàÐÍ
- µ÷ÐĹö×ÓÖá³Ð
- µ÷ÐÄÇòÖá³Ð
- ¹öÕë×éºÏÖá³Ð
- ¹Ø½ÚÖá³Ð
- ½Ç½Ó´¥ÇòÖá³Ð
- Éî¹µÇòÖá³Ð
- ÍÆÁ¦¹ö×ÓÖá³Ð
- ÍÆÁ¦ÇòÖá³Ð
- ÍâÇòÃæÇòÖá³Ð
- Ô²Öù¹ö×ÓÖá³Ð
- Ô²×¶¹ö×ÓÖá³Ð
- ÈȵãÐÂÎÅ
- ¶àµ¶°ë×Ô¶¯³µ´²¼¼Êõ²ÎÊý ¡
- ³µÖá´Ö³µ³µ´²¼¼Êõ²ÎÊý ¡
- Æû³µ¸Ö°åµ¯»ÉµÄÈó»¬ ¡
- µ¥ÖáÁù½Ç×Ô¶¯³µ´²¼¼Êõ²ÎÊý ¡
- ÎåÊ®ÁåISUZU²ñÓÍ»ú³µÐÍ¡¢»úÐͲ ¡
- µ¥Öá×ÝÇÐ×Ô¶¯³µ´²¼¼Êõ²ÎÊý ¡
- Á¢Ê½°ë×Ô¶¯³µ´²¼¼Êõ²ÎÊý ¡
- ʲôÊÇÆû³µµÄÐü¼Üϵͳ ¡
- תËþ³µ´²¼¼Êõ²ÎÊý ¡
- ÎÔʽ¶àÖá×Ô¶¯³µ´²¼¼Êõ²ÎÊý ¡
- ÊýÏÔ³µ´²¼¼Êõ²ÎÊý ¡
- °ë×Ô¶¯·ÂÐγµ´²¼¼Êõ²ÎÊý ¡
- ÂÝÐýµ¯»ÉÓë¼õÕñÆ÷ ¡
- Æû³µ¼õÕñ×°ÖÃ-¸Ö°åµ¯»É¼ò½é ¡